Offline Handwritten Recognition of Malayalam District Name - A Holistic Approach

نویسندگان

  • Jino P. J
  • Kannan Balakrishnan
چکیده

Various machine learning methods for writer independent recognition of Malayalam handwritten district names are discussed in this paper. Data collected from 56 different writers are used for the experiments. The proposed work can be used for the recognition of district in the address written in Malayalam. Different methods for Dimensionality reduction are discussed. Features consider for the recognition are Histogram of Oriented Gradient descriptor, Number of Black Pixels in the upper half and lower half, length of image. Classifiers used in this work are Neural Network, SVM and RandomForest. KeywordOffline Handwritten Recognition, Machine Learning, Dimensionality Reduction, HOG

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition

Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...

متن کامل

Handwritten Character Recognition In Malayalam Scripts- A Review

Handwritten character recognition is one of the most challenging and ongoing areas of research in the field of pattern recognition. HCR research is matured for foreign languages like Chinese and Japanese but the problem is much more complex for Indian languages. The problem becomes even more complicated for South Indian languages due to its large character set and the presence of vowels modifie...

متن کامل

Holistic Verification of Handwritten Phrases

ÐIn this paper, we describe a system for rapid verification of unconstrained off-line handwritten phrases using perceptual holistic features of the handwritten phrase image. The system is used to verify handwritten street names automatically extracted from live U.S. mail against recognition results of analytical classifiers. Presented with a binary image of a street name and an ASCII street nam...

متن کامل

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

Holistic Farsi handwritten word recognition using gradient features

In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1705.00794  شماره 

صفحات  -

تاریخ انتشار 2017